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a b s t r a c t

The paper reports on the application of an electronic tongue for simultaneous determination of ethanol,
acetaldehyde, diacetyl, lactic acid, acetic acid and citric acid content in probiotic fermented milk. The
�Astree electronic tongue by Alpha M.O.S. was employed. The sensor array comprised of seven non-
specific, cross-sensitive sensors developed especially for food analysis coupled with a reference Ag/AgCl
electrode. Samples of plain, strawberry, apple-pear and forest-fruit flavored probiotic fermented milk
were analyzed both by standard methods and by the potentiometric sensor array. The results obtained
by these methods were used for the development of neural network models for rapid estimation of aroma
compounds content in probiotic fermented milk.

The highest correlation (0.967) and lowest standard deviation of error for the training (0.585), selec-
robiotic fermented milk
roma
NN

tion (0.503) and testing (0.571) subset was obtained for the estimation of ethanol content. The lowest
correlation (0.669) was obtained for the estimation of acetaldehyde content. The model exhibited poor
performance in average error and standard deviations of errors in all subsets which could be explained
by low sensitivity of the sensor array to the compound. The obtained results indicate that the potentio-
metric electronic tongue coupled with artificial neural networks can be applied as a rapid method for the
determination of aroma compounds in probiotic fermented milk.
. Introduction

The development of sensors with broad selectivity and high
ross-sensitivity has been the main concern over the last decade
1–4]. The incorporation of this sensors in arrays combined with

ultivariate data processing produced a new approach in sensor
echnology. The analyzed samples were chemically fingerprinted,
imilarly as in human sense of taste where non-specific receptors
sensors) react to dissolved compounds and transfer stimuli via the
ervous system to the brain, where a neural network processes
he signal pattern. Thus this new approach in sensor technology
as named “electronic tongue” [1]. The sensors used in arrays are
ainly potentiometric [4–6], voltammetric [7–9] and conducto-
etric [10]. The electronic tongue can be used in both qualitative

5] and quantitative [11] analysis and depending on data process-
ng both methods are achievable from a single measurement. Thus,
aybe the greatest advantage of using a sensor array is its ability
o generate multivariate analytical data in real time and simultane-
usly permitting identification of matrix effects [12]. A wide range
f traditional methodologies are used in food analysis to detect or

∗ Corresponding author. Tel.: +385 1 4605043; fax: +385 1 4605105.
E-mail address: nmajor@pbf.hr (N. Major).
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© 2010 Elsevier B.V. All rights reserved.

determine the compound characteristics of food products. These
techniques are precise, accurate and reliable but at the same time
destructive, time-consuming, require expensive instrumentation
and are unsuitable for in situ or at site monitoring [13]. The wide
application of electronic tongues [5,6,14] confirms its potential in
food and beverage analysis and quality control. Sensor array data
processing has an important role in the development of electronic
tongues. Due to the rapidly growing computing power and faster
processing of huge data sets the application of elaborate and diverse
methods for data analysis has been facilitated [15]. There are many
papers that report on pattern recognition techniques, multivariate
data processing and the application of artificial neural networks
(ANN) in processing sensor outputs [16–18]. ANN provide several
advantages over classical statistical pattern recognition methods
such as unified approaches for feature extraction and classification
and flexible procedures for finding moderately non-linear solutions
[15]. Other advantages of ANN’s are the ability to handle noisy or
missing data, equations are not involved, a network can deal with
previously unseen data once training is completed, large numbers

of variables can be included and provide general solutions with
good accuracy [19]. The main characteristics of ANN is the ability
to learn complex non-linear relationships between inputs and out-
puts, use sequential training procedures and adapt themselves to
the data. ANN models attempt to use some organizational princi-
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les in a network of weighted directed graphs in which the nodes
re artificial neurons and directed edges are connections between
euron inputs and neuron outputs. It can be viewed as massively
arallel computing systems consisting of an extremely large num-
er of simple processors with many interconnections [15].

Fermented milks are accepted by the consumer because of their
haracteristic properties: flavor, odor, color, aroma, appearance and
exture. All these sensory qualities are products of multiple fer-

entations. When designing a dairy product the desired sensory
haracteristics must be taken into account [20]. The first hours are
rucial for the aroma development in freshly fermented dairy prod-
cts. Lactose is metabolized by microorganisms to lactic acid and
he aroma depends on the developed lactate and the byproducts
f glycolysis [21]. More than 100 chemical compounds have been
solated from fermented milk and related milk products [22] but
nly a few (acetaldehyde, ethanol, diacetyl and acetoin) have a high
mpact on the desired product flavor [23].

The purpose of this paper was to evaluate the performance of the
Astree electronic tongue (Alpha M.O.S.) for rapid determination
f compounds responsible for aroma development in probiotic fer-
ented milk. The evaluation was performed using ANN models for

he estimation of the aroma compounds content developed on the
asis of sensor array output data. The advantages of the developed
ethod are no sample preparation, no additional costs and short

ime of analysis. The disadvantage of such a method is extensive
nitial determination of aroma compounds content by traditional

ethods. The purpose of such extensive determination is to acquire
nough data for reliable ANN model development for the estima-
ion of the aroma compounds content in probiotic fermented milk.

. Materials and methods

.1. Samples

The analysis was performed on 40 samples of probiotic
ermented milk of different flavor (plain, strawberry flavored,
pple-pear flavored and forest-fruit flavored). The samples were
btained from the local market freshly arrived from the producer.
he samples were stored for 20 days at two different temperatures
+4 ◦C and +25 ◦C) to obtain diverse concentrations of the analyzed
roma compounds. Hydrochloric acid (w = 37%, ISO – For Analysis
rade) was purchased from Carlo Erba Reagents.

.1.1. The ˛Astree electronic tongue system
The electronic tongue was obtained from Alpha M.O.S., France.

t consists of a 16-position Sample Changer and a 759 Swing Head
or sampling (Metrohm, Ltd.), an interface electronic module for
ignal amplification and analog to digital conversion and a sensor
it, both developed by Alpha M.O.S., France, a reference Ag/AgCl
lectrode and a mechanical stirrer both from Metrohm, Ltd. The
sed sensor kit was especially developed for food analysis to ensure
ood sensitivity and cross-selectivity of each sensor [24]. The active
lectrode area of the sensors is covered by an organic coating. By
ariation in composition of this organic coating different sensitivity
nd selectivity for each sensor to various substances was obtained
25]. The kit comprises of 7 cross-selective, non-specific chemically

odified field effect transistors (CHEMFETs).
CHEMFETs are ISFETs with an added membrane to provide selec-

ivity for the desired ions. The ISFET is actually a MOSFET with the
ate connection separated from the chip in a form of a reference

lectrode connected to the gate oxide through the aqueous solution
26]. In this perspective, ISFETs can be seen as electronic devices, as

OSFETs, with the advantage of chemically modifying the thresh-
ld voltage through the interface potential at the electrolyte/oxide
nterface [26].
2 (2010) 1292–1297 1293

The �Astree electronic tongue was connected to a computer
built according to instructions [24] with the Astree II software
(Alpha M.O.S., Version 3.0.1., 2003) installed. The Astree II software
automatically gathers and stores the sensors output data.

2.2. Quantification of aroma compounds

Acetaldehyde, ethanol, lactic acid, citric acid and acetic acid
content were determined by enzymatic methods. Acetaldehyde
oxidizes into acetic acid in the presence of aldehyde dehydrogenase
(Al-DH) by nicotinamide-adenine dinucleotide (NAD) (1).

Acetaldehyde+NAD+ +H2O
Al-DH←→ acetic acid+NADH+H+ (1)

Acetaldehyde content was determined indirectly through NADH
content which was measured spectrophotometrically at 340 nm.
Ethanol is oxidized to acetaldehyde in the presence of the enzyme
alcohol dehydrogenase (ADH) by NAD in alkaline media (2).
Acetaldehyde content was again determined indirectly by NADH
content at 340 nm (1).

Ethanol+NAD+ ADH←→acetaldehyde+NADH+H+ (2)

In the presence of d-lactate dehydrogenase (d-LDH), d-lactic acid is
oxidized by NAD to pyruvate. The oxidation of l-lactic acid requires
the presence of the enzyme l-lactate dehydrogenase ((3) and (4)).

D-lactic acid+NAD+D-LDH←→pyruvate+NADH+H+ (3)

L-lactic acid+NAD+L-LDH←→pyruvate+NADH+H+ (4)

The equilibrium of these reactions lies completely on the side of lac-
tic acid. However, by trapping the pyruvate in a subsequent reaction
catalyzed by the enzyme glutamate-pyruvate transaminase (GPT)
in the presence of l-glutamate, the equilibrium can be displaced in
favor of pyruvate and NADH (5).

Pyruvate+ L-glutamate
GPT←→L-alanine+ 2-oxoglutarate (5)

The amount of NADH formed in the above reactions is stoichiomet-
ric with the amount of d-lactic acid and l-lactic acid, respectively.
NADH was determined by its absorbance at 340 nm. Citric acid is
converted to oxaloacetate and acetate in the reaction catalyzed by
the enzyme citrate lyase (CL) (6).

Citrate
CL−→oxaloacetate+ acetate (6)

In the presence of the enzymes, malate dehydrogenase (MDH)
and l-lactate dehydrogenase (l-LDH), oxaloacetate and its decar-
boxylation product pyruvate are reduced to l-malate and l-lactate,
respectively, by NADH ((7) and (4)).

Oxaloacetate+NADH+H+MDH←→L-malate+NAD+ (7)

The amount of NADH oxidized in reactions (4) and (7) is stoichio-
metric with the amount of citrate. NADH is again determined by
its absorbance at 340 nm. Acetic acid is converted in the presence
of the enzyme acetyl-CoA synthetase (ACS) with adenosine-5′-
triphosphate (ATP) and coenzyme A (CoA) to acetyl-CoA (8).

Acetic acid+ ATP+ CoA
ACS−→acetyl-CoA+ AMP+ pyrophosphate(8)

Acetyl-CoA reacts with oxaloacetate to citrate in the presence of
citrate synthetase (9).

Acetyl-CoA+ oxaloacetate+H O
CS−→citrate+ CoA (9)
2

The oxaloacetate required for reaction (9) is formed from malate
and NAD in the presence of malate dehydrogenase (7). In reaction
(7) NAD is reduced to NADH. The determination is based on the
increase of NADH absorbance at 340 nm [27]. In the presence of
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lkali, creatine and alpha-naphtol, diacetyl forms a compound that
esults in a red solution, the intensity of which can be measured
olorimetrically. Diacetyl content was determined using a calibra-
ion curve obtained by applying the same procedure to diacetyl
tandard solutions ranging from 5 ppm to 25 ppm [28].

.3. Potentiometric measurements

Ten samples were analyzed by the sensor array every 5th day
hrough a period of 20 days. Every sample was measured 3 times
nd a total of 120 measurements were performed. Conditioning of
he potentiometric sensor array with probiotic fermented milk was
erformed prior to each analysis session. The conditioning of the
ensor array consisted of analyzing plain probiotic fermented milk
ntil the response of each sensor remained unchanged through 3
nalysis cycles, each cycle lasting 300 s. The measuring procedure
as described elsewhere [29]. The sensor array was rinsed with
eionized water for 30 s between measurements. The samples were
nalyzed at +25 ◦C. Hydrochloric acid diluted in deionized water
0.01 mol/L) was analyzed as a reference sample together with fer-

ented milk samples to follow and later correct the sensors drift
n time.

.4. Data analysis

The sensor outputs collected by the Astree II software (Alpha
.O.S.) were imported to Microsoft Excel (Microsoft Excel 2002,

P-2) and centered. Centering, a popular data transformation tech-
ique, aims to translate the multivariate data cloud to the data
enter. The operation can be expressed as:

c = x −�(X)

here xc represents a column-wise centered variable of data X [30].
he sensor drift correction was performed using data obtained by
he analysis of the reference sample (hydrochloric acid, 0.01 mol/L).
he corrected sensor outputs were obtained by subtracting each
ample’s sensor outputs with a proprietary reference sample sen-
or outputs. Statistica 7.1 (StatSoft, Inc., 2005) was used for the
evelopment of artificial neural network (ANN) models for rapid
etermination of aroma compounds concentrations in probiotic
ermented milk by the potentiometric sensor array. Broadly, a
eural network is a collection of interlinked neurons that incre-
entally learn from the environment (data) to capture essential

inear and non-linear trends in complex data so that it provides
eliable predictions of new situations, even with partial informa-
ion [31]. The power of these networks comes from the hidden
ayer of neurons located between the input and output layer of
eurons. The hidden layer may consist of one or many non-linear
eurons, and more importantly, it performs continuous, non-linear
ransformations of the weighted inputs in contrast with the linear

apping used in the linear neuron and step function mapping used
n the perceptron [31]. Training algorithms used in the develop-

ent of the models involve an iterative procedure for minimization
f an error function, with adjustments to the weights being made
n a sequence of steps. In each step there are two stages. In the
rst stage, errors are propagated backwards through the network
nd in the second stage the derivatives are then used to compute
he adjustments to be made to the weights. The simplest method
or computing the adjustment involves gradient descent [32]. In
he development of each ANN model 120 sensor array measure-
ents were used. The measurements were randomly assigned to
subsets as follows: 60 measurements for the training subset, 30
easurements for the selection subset and 30 measurements for

he testing subset. The training subset was used to train the ANN
odel, the role of the selection subset was to provide internal val-
2 (2010) 1292–1297

idation of the model and the testing subset for external validation
of the obtained model. One of the most desirable features of a
neural network model is to generalize data well. To avoid over-
fitting problems, the select and test errors were monitored during
training and testing of neural networks with the aim to obtain a
model with similar or lower select and test errors than the train
error.

An initial screening of ANN models was performed for each fer-
mented milk aroma compound. The screened models employed
linear, radial basis function or multi-layer perceptron architectures.
Multi-layer perceptrons were selected in all cases for further ANN
model development because of their better initial performance in
estimating the content of fermented milk aroma compounds. Fur-
ther training of the models was performed to obtain an optimal
number of hidden neurons without exhausting the degree of free-
dom of the system. Ultimately the ANN models for the estimation
of aroma compound content were chosen according to prediction
accuracy and minimal number of input and hidden neurons to keep
the model as simple as possible. All of the trained ANN models
employed a hyperbolic transfer function to produce the output of
hidden neurons. The ANN model for the determination of ethanol
in probiotic fermented milk had the architecture of a multi-layer
perceptron with 6 neurons in the input layer, 4 neurons in the
hidden layer and 1 neuron in the output layer. The network was
trained by gradient descent algorithm for 100 epochs, followed by
146 epochs of conjugate gradient algorithm. The architecture of the
ANN model for the determination of acetic acid concentration in
probiotic fermented milk was a multi-layer perceptron with 7 neu-
rons in the input layer, 3 neurons in the hidden layer and 1 neuron
in the output layer. The network was trained by gradient descent
algorithm for 100 epochs, followed by 58 epochs of conjugate gra-
dient algorithm. The ANN model for rapid estimation of citric acid
concentration in probiotic fermented milk had the architecture of a
multi-layer perceptron, with 7 neurons in the input layer, 5 neurons
in the hidden layer and 1 neuron in the output layer. The network
was trained by 100 epochs of gradient descent algorithm followed
by 33 epochs of conjugate gradient algorithm. The architecture
of the ANN model for the prediction of lactic acid concentration
values in probiotic fermented milk was a multi-layer perceptron,
with 7 neurons in the input layer, 4 neurons in the hidden layer
and 1 neuron in the output layer. The model was trained by 100
epochs of gradient descent algorithm followed by 27 epochs of con-
jugate gradient algorithm. The ANN model for the determination
of diacetyl concentration had a profile of a multi-layer perceptron,
with 7 neurons in the input layer, 5 neurons in the hidden layer
and 1 neuron in the output layer. The model was trained by gra-
dient descent algorithm for 100 epochs, followed by 71 epochs of
conjugate gradient algorithm. The architecture of the ANN model
for the determination of acetaldehyde concentration values in pro-
biotic fermented milk was a multi-layer perceptron, with 2 neurons
in the input layer, 4 neurons in the hidden layer and 1 neuron in
the output layer. The model was trained for 100 epochs of gradi-
ent descent algorithm followed by 27 epochs of conjugate gradient
algorithm.

3. Results and discussion

The results obtained from classical analysis of the samples and
the data acquired by the electronic tongue were used to create ANN
regression models for simple and rapid determination of aroma
components in probiotic fermented milk by the potentiometric

sensor array. The plots of observed and predicted concentration
values of the aroma compounds of probiotic fermented milk with
their respective correlations are shown in Fig. 1. Table 1 shows the
average errors, standard deviations of errors and correlations of the
training, selection and testing subsets of the models.
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ig. 1. ANN regression between the potentiometric sensor array and aroma comp
ermented milk samples N = 40.

The obtained ANN model for the determination of ethanol
n probiotic fermented milk had a train error of 0.079, select
rror of 0.069 and test error of 0.078. The correlation between
he observed and predicted concentration values of ethanol was
.967 (Fig. 1), with correlations of 0.966, 0.968 and 0.970 for the

raining, selection and testing subsets, respectively (Table 1). The
verage errors were −0.003, 0.084 and −0.092 and the standard
eviations of errors were 0.585, 0.503 and 0.571 for the training,
election and testing subsets, respectively (Table 1). The model
xhibited great generalization capability with excellent correla-
ontent in probiotic fermented milk, number of replicas n = 3, number of probiotic

tion between the observed and predicted concentration values of
ethanol in probiotic fermented milk samples with low average
errors and low standard deviation of errors. The results imply that
the potentiometric sensor array can be used to successfully pre-
dict ethanol content in probiotic fermented milk (from 0.5 ppm

to 8 ppm). Legin et al. assessed the quality of ethanol, vodka and
eau-de-vie. The sensor array used in the research was capable of
distinguishing between synthetic and alimentary grain ethanol as
well as alimentary ethanol with different degrees of purification
[33].
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Table 1
Descriptive statistics of the ANN models for rapid determination of aroma compounds content in probiotic fermented milk.

Data mean (ppm) Data S.D. (ppm) Error mean (ppm) Error S.D. (ppm) Abs E. mean (ppm) S.D. ratio Correlation

Ethanol
Training 3.761 2.275 −0.003 0.585 0.427 0.257 0.966
Selection 2.900 1.838 0.084 0.503 0.393 0.274 0.968
Testing 3.719 2.359 −0.092 0.571 0.476 0.242 0.970

Acetic acid
Training 15.492 6.525 −0.004 2.117 1.631 0.324 0.946
Selection 12.537 5.991 0.255 1.733 1.358 0.289 0.957
Testing 12.055 6.295 0.373 1.871 1.272 0.297 0.958

Citric acid
Training 196.472 50.841 −0.025 16.479 13.729 0.324 0.946
Selection 196.574 46.315 1.014 12.119 9.828 0.262 0.966
Testing 201.940 45.582 2.639 16.007 13.643 0.351 0.942

Diacetyl
Training 1.204 0.505 −0.002 0.195 0.147 0.387 0.922
Selection 1.188 0.514 0.041 0.185 0.150 0.360 0.935
Testing 1.276 0.411 0.082 0.159 0.144 0.387 0.931

Lactic acid
Training 215.811 67.844 2.369 32.950 26.080 0.486 0.874
Selection 207.449 59.055 −1.782 25.503 18.259 0.432 0.902
Testing 187.439 54.389 1.742 20.147 15.167 0.370 0.930
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Acetaldehyde
Training 3.248 1.778 0.015
Selection 3.462 1.990 0.185
Testing 3.492 1.342 −0.001

The train error of the ANN model for the determination of
cetic acid concentration in probiotic fermented was 0.089, the
elect error 0.073 and the test error 0.080. The correlation between
he observed and predicted concentration values of acetic acid
n probiotic fermented milk was 0.954 (Fig. 1). The training sub-
et achieved a correlation of 0.946, the selection subset 0.957
nd the testing subset 0.958 (Table 1). The average errors were
0.004, 0.255 and 0.373 and the standard deviations of errors were
.117, 1.733 and 1.871 for the training, selection and testing sub-
ets, respectively (Table 1). The ANN model for the determination
f acetic acid concentration in probiotic fermented milk by the
otentiometric sensor array had excellent generalization capabil-

ty which is represented by the low select and test errors (0.073
nd 0.080, respectively). The correlation between the observed
nd predicted acetic acid concentration values (0.954), the aver-
ge errors and standard deviations of errors of the ANN model
how that the potentiometric sensor array is capable of successfully
etecting and quantifying small concentrations of acetic acid (from
ppm to 29 ppm). Turner et al. combined an electronic tongue
ith multivariate data processing to monitor batch Escherichia coli

ermentation [34]. The electronic tongue (comprising of 23 poten-
iometric sensors) was able to detect and successfully quantify low
cetic acid concentrations (from 0.1 g/L to 6.4 g/L) with an average
rror of 11%. Verelli et al. investigated the sensitivity of potentio-
etric sensors to small concentrations of acetic acid developed in
hite dry Italian wines [35]. The Authors achieved excellent cor-

elation of 0.9947 for the training set and 0.9799 for the validation
et between the observed and predicted concentration values of
cetic acid in the calibration model (the concentration ranged from
.025 g/100 mL to 0.060 g/100 mL of acetic acid). The obtained rel-
tive errors (from 3.0% to 17.5%) for the wine samples showed that
he potentiometric sensors used are very sensitive even to small
oncentrations of acetic acid.

The obtained train, select and test errors of the ANN model for
apid estimation of citric acid concentration in probiotic fermented
ilk were 0.104, 0.077 and 0.102, respectively. The correlation
etween the observed and predicted citric acid concentration
alues was 0.949 (Fig. 1). The training, selection and testing sub-
ets achieved correlations of 0.946, 0.966 and 0.942, respectively
Table 1). The average errors were −0.025, 1.014 and 2.639, while
he standard deviations of errors were 16.479, 12.119 and 16.007
1.320 1.079 0.742 0.672
1.295 1.056 0.651 0.767
1.233 0.973 0.919 0.538

for the training, selection and testing subset (Table 1). Buellens et
al. evaluated a potentiometric electronic tongue with 27 sensors for
the determination of acid and sugar profiles of tomato juices from
different cultivars [11]. Among acids, the authors investigated the
performance of the electronic tongue for the determination of citric
acid concentration in artificial juice and tomato juice. The obtained
correlations with PLS regression for the artificial juice (0.99 for the
calibration set and 0.98 for the validation set) and tomato juice
(slope of 0.60) indicate that the applied electronic tongue is capa-
ble of quantifying citric acid content to a satisfying degree [11].
The developed ANN model for the prediction of citric acid con-
centration values in probiotic fermented milk showed excellent
correlation between the observed and predicted concentration val-
ues, low average errors and standard deviations of errors which
indicate excellent sensitivity of the potentiometric sensor array to
citric acid content in the investigated concentration range (from
110 ppm to 270 ppm).

The train error of the ANN model for the determination of
diacetyl concentration was 0.109, the select error 0.106 and the
test error 0.100. The ANN model obtained a correlation of 0.923
between the observed and predicted diacetyl concentration val-
ues in probiotic fermented milk (Fig. 1). The correlation of the
training subset was 0.922, of the selection subset 0.935 and of
the testing subset 0.931 (Table 1). The average errors of the mod-
els training, selection and testing subsets were −0.002, 0.041 and
0.082, respectively (Table 1). The standard deviations of errors were
0.195, 0.185 and 0.159 for the training, selection and testing sub-
sets, respectively (Table 1). The ANN model for the prediction of
diacetyl concentration values had low average errors and standard
deviations of errors and obtained a good correlation between the
observed and predicted diacetyl concentration values in probiotic
fermented milk. This implies that the potentiometric sensor array
could be used to predict diacetyl content in probiotic fermented
milk in the given range (from 0.4 ppm to 2.4 ppm).

The train, select and test errors of the ANN model for the predic-
tion of lactic acid concentration values in probiotic fermented milk

were 0.116, 0.090 and 0.071, respectively. The correlation between
the observed and predicted lactic acid concentration values was
0.895 (Fig. 1). The correlation of the training subset was 0.874, of
the selection subset 0.902 and of the testing subset 0.930 (Table 1).
The average errors were 2.369,−1.782 and 1.742 with the standard
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eviations of errors being 32.950, 25.503 and 20.147 for the train-
ng, selection and testing subsets, respectively (Table 1). Esbensen
t al. reported on the performance of an electronic tongue with
0 non-specific chemical sensors for monitoring batch fermenta-
ion process of starting culture for light cheese production [36]. The
lectronic tongue predicted the lactic acid concentration with a rel-
tive error of 10% during the training of the ANN model. The test
amples obtained relative errors ranging from 2% to 25%, while the
oncentration values ranged from 0.99 g/L to 11.18 g/L [36]. Accord-
ng to the developed ANN model for the determination of lactic
cid concentration in probiotic fermented milk the potentiometric
ensor array exhibited good sensitivity and quantification capabil-
ty for the given concentration range of lactic acid content (from
00 ppm to 400 ppm).

The train, select and test errors of the ANN model for the
etermination of acetaldehyde concentration values in probiotic
ermented milk were 0.201, 0.200 and 0.189, respectively. The
orrelation between the observed and predicted acetaldehyde con-
entration values in probiotic fermented milk was 0.669 (Fig. 1). The
btained correlations for the training, selection and testing subsets
ere 0.672, 0.767 and 0.538 (Table 1). The models average errors
ere 0.015, 0.185 and −0.001 with standard deviations of errors

f 1.320, 1.295 and 1.233 for the training, selection and testing
ubsets, respectively (Table 1). This model had significant standard
eviations of errors and low correlation between the observed and
redicted values of acetaldehyde concentration values in probiotic
ermented milk. This could be due to low sensitivity of the sensors
o the compound.

. Conclusions

The developed model for ethanol concentration determination
n probiotic fermented milk showed the best prediction capability

ith low error of prediction. The ANN models for acetic acid, cit-
ic acid, lactic acid and diacetyl concentration determination also
xhibited good prediction capability with slightly higher predic-
ion errors. The model for acetaldehyde determination exhibited
ow accuracy of prediction which was most likely caused by low
ensitivity of the potentiometric sensor array to acetaldehyde. The
otentiometric sensor array exhibited great potential as a tool in
apid determination of aroma compounds in probiotic fermented
ilk.
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Mljekarstvo 59 (3) (2009) 193–200.
15] A.K. Jain, R.P.W. Duin, J. Mao, IEEE Trans. Pattern Anal. 22 (2000) 4–37.
16] P. Ciosek, Z. Brzozka, W. Wróblewski, E. Martinelli, C. Di Natale, A. D’Amico,

Talanta 67 (2005) 590–596.
17] P. Ciosek, W. Wróblewski, Sens. Actuators B 114 (2006) 85–93.
18] Q. Cheng, J. Zhao, S. Vittayapadung, Food Res. Int. 41 (2008) 500–504.
19] A.K. Deisingh, D.C. Stone, M. Thompson, Int. J. Food Sci. Technol. 39 (2004)

587–604.
20] C.G. Vinderola, G.A. Costa, S. Regenhardt, J.A. Reinheimer, Int. Dairy J. 12 (2002)

579–589.
21] R. Imhof, J.O. Bosset, Lebensm. Wiss. Technol. 27 (3) (1994) 265–269.
22] A. Ott, L.B. Fay, A. Chaintreau, J. Agric. Food Chem. 45 (3) (1997) 850–

858.
23] V. Xanthopoulos, D. Picque, N. Bassit, C.Y. Boquein, G. Corrieu, J. Dairy Res. 61

(1994) 289–297.
24] Alpha M.O.S., �Astree User’s Manual, Alpha M.O.S., Toulouse, 2003.
25] Alpha M.O.S., Technical Note T-SAS-01, Alpha M.O.S., Toulouse, 2002.
26] P. Bergveld, Sens. Actuators B 88 (2003) 1–20.
27] Boehringer Mannheim, Methods of Biochemical Analysis and Food Analysis,

Boehringer Mannheim, Mannheim, 2000.
28] E.C. Hill, F.W. Wenzel, A. Barreto, Food Technol. 8 (1954) 168–171.
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